269 research outputs found

    Cell adhesion to agrin presented as a nanopatterned substrate is consistent with an interaction with the extracellular matrix and not transmembrane adhesion molecules

    Get PDF
    Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-dependent threshold for this form of cell adhesion. RESULTS: Here we show a similar dependence of cell adhesion on the spacing of agrin, a protein that exists as both a secreted, matrix-bound form and a type-2 transmembrane form in vivo. Agrin was presented as a substrate for cell adhesion assays by anchoring recombinant protein to gold nanoparticles that were arrayed at tunable distances onto glass coverslips. Cells adhered well to nanopatterned agrin, and when presented as uniformly coated substrates, adhesion to agrin was comparable to other well-studied adhesion molecules, including N-Cadherin. Adhesion of both mouse primary cortical neurons and rat B35 neuroblastoma cells showed a spacing-dependent threshold, with a sharp drop in adhesion when the space between agrin-coated nanoparticles increased from 60 to 90 nm. In contrast, adhesion to N-Cadherin decreased gradually over the entire range of distances tested (uniform, 30, 60, 90, and 160 nm). The spacing of the agrin nanopattern also influenced cell motility, and peptide competition suggested adhesion was partially integrin dependent. Finally, differences in cell adhesion to C-terminal agrin fragments of different lengths were detected using nanopatterned substrates, and these differences were not evident using uniformly coated substrates. CONCLUSION: These results suggest nanopatterned substrates may provide a physiological presentation of adhesive substrates, and are consistent with cells adhering to agrin through a mechanism that more closely resembles an interaction with the extracellular matrix than a transmembrane adhesion molecule

    4D Printing of Shape Memory Polymers: From Macro to Micro

    Get PDF
    A novel and versatile shape memory ink system allowing 4D printing with light at the macroscale as well as the microscale is presented. Digital light processing (DLP) and direct laser writing (DLW) are selected as suitable 3D printing technologies to cover both regimes. First, a system based on monofunctional isobornyl acrylate and two crosslinkers consisting of a soft and a hard diacrylate is identified and proven to be compatible with both printing techniques. Employing DLP, a large variety of structures exhibiting distinct complexity is printed. These structures range from simple frames to more demanding 3D geometries such as double platform structures, infinity rings, or cubic grids. The shape memory effect is demonstrated for all the 3D geometries. Excellent shape fixity as well as recovery and repeatability is shown. Furthermore, the formulation is adapted for fast 4D printing at the microscale using DLW. Importantly, the 4D printed microstructures display remarkable shape memory properties. The possibility of trapping and releasing microobjects, such as microspheres, is ultimately demonstrated by designing, smart box-like 4D microstructures that can be thermally actuated—evidencing the versatility and potential of the reported system

    Microstructured blood vessel surrogates reveal structural tropism of motile malaria parasites

    Get PDF
    Plasmodium sporozoites, the highly motile forms of the malaria parasite, are transmitted naturally by mosquitoes and traverse the skin to find, associate with, and enter blood capillaries. Research aimed at understanding how sporozoites select blood vessels is hampered by the lack of a suitable experimental system. Arrays of uniform cylindrical pillars can be used to study small cells moving in controlled environments. Here, an array system displaying a variety of pillars with different diameters and shapes is developed in order to investigate how Plasmodium sporozoites associate to the pillars as blood vessel surrogates. Investigating the association of sporozoites to pillars in arrays displaying pillars of different diameters reveals that the crescent-shaped parasites prefer to associate with and migrate around pillars with a similar curvature. This suggests that after transmission by a mosquito, malaria parasites may use a structural tropism to recognize blood capillaries in the dermis in order to gain access to the blood stream

    Innenentwicklung durch Visualisierung und Partizipation

    Get PDF
    Mithilfe des vom BMBF geförderten Forschungsprojekts AktVis soll durch die Entwicklung und Erprobung neuer praxisnaher Entscheidungshilfen sowie interaktiver Planungsinstrumente eine aktive Innenentwicklung unterstützt werden. Denn trotz des breiten Konsens, angefangen bei der Wissenschaft bis hin zur kommunalen Praxis, hinsichtlich der ökologischen, ökonomischen und sozialen Notwendigkeit einer Reduzierung der Flächeninanspruchnahme und Fokussierung städtebaulicher Entwicklungen auf den Siedlungskörper, bestehen weiterhin Defizite in der faktischen Umsetzung. Insbesondere der Zugriff auf Grundstücke, die im Privateigentum stehen, erweist sich als schwierig. Für eine erfolgreiche Aktivierung von Innenentwicklungspotenzialen werden daher die Stakeholder und Schlüsselakteure, also die Eigentümer, Bürger und lokalen Gruppen, in den Kommunen als außerordentlich relevant angesehen. Diese sollen durch eine intensive Einbindung und die aktive Mitgestaltung der Ortskerne für Projekte mobilisiert werden. Mithilfe eines Multitouch-Tisches sowie eines WebGIS werden die Möglichkeiten des selbstbestimmten Editierens von Inhalten und der Veränderungen der Ortschaften gegeben. Die dreidimensionale Visualisierung mit unterschiedlichen Tools soll zur Aktivierung von Potenzialen beitragen

    A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins

    Get PDF
    Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins avß3, avß5, avß6, avß8, a5ß1, aIIbß3, using homogenous ELISA-like solid phase binding assay.Postprint (published version
    corecore